从抗腐蚀性能来看,QPQ盐浴较之类似的工艺如高温碱煮和余温发黑有着不可比拟的优势;但生产实践同时也表明,螺纹紧固件在QPQ处理过程经常出现外观颜色发红、发黄、发花,变白,污垢多,杂质多等诸多不良表面缺陷。在螺纹斜面或牙谷底处容易吸污纳垢,也不容易进行前处理(去油、除锈、清洗等)。在氮碳共渗过程中,螺纹结构也通常流动性不太好,容易导致化合物层较薄,表面诸多不良缺陷。吴清江,张永顺也发现,在生产中当材料含Si量多时,如27SiMn、30CrMnSi等材料,工件外表发花、发红现象极多。虽然此现象不影响工件的耐磨和抗蚀性,但影响工件的美观。
同时,紧固件螺纹需要有稳定公差尺寸,才能保证螺纹良好的配合性和互换性。QPQ处理时,再次加热和冷却,必将会应力发生变化,从而导致螺纹精度的不稳定性。
2、实验基本工作原理
2.1原来QPQ处理工艺主要流程为
去油→除锈→漂洗→预热→氮化→氧化→抛光→氧化→水清洗→自然干燥→浸油。
经过多次小批QPQ处理试验,确定了符合本产品的工艺流程和技术参数。
2.2优化后QPQ处理工艺主要流程为
去油→除锈→漂洗→预热→氮化→氧化→抛光→氧化超声波清洗→强制干燥→浸油。
2.3优化后QPQ处理工艺主要技术参数
预热(空气炉):350—400℃,30-40min。氮化(盐溶炉):520-580℃,2-3h。氧化(盐溶炉):360-400℃,15-20min。
2.4优化后QPQ处理工艺曲线为
the optimized QPQ treatment processgraph
2.5 QPQ处理各主要工序的基本作用
除油:采用有机溶剂型清洗剂除去表面的油污,同时也去掉零件表面的杂质。
除锈:需采用酸洗或喷砂法除尽表面已产生的氧化皮和氧化物,使氮化层易吸附在基材表面。否则已经渗透到金属内部的氧原子,在氮化过程中会阻止渗氮的速度,影响渗氮的效果。同时,氧化皮和氧化物还会污染盐浴成分,导致溶液杂质偏多使氮化层易吸附在基材表面。
预热:其目的烘干工件表面的水分,以防工件带水入氮化炉引起盐浴溅射。使冷工件升温后再入氮化炉,便于加快渗氮扩散速度,提高渗氮效果。
氮碳共渗:氮化是QPQ盐浴的最关键工序。氮化盐中钒酸根的分解而产生的活性氮原子渗入工件,在工件表面形成高耐磨性和抗蚀性强的化合物层和耐疲劳的扩散层。其反应方程式⑴如下:
2CN0-+02=C032-+C0+N2
4CNO-=C032-+2CN-+CO+N2
在QPQ处理的氮化温度(520-570℃)下,工件表面的高浓度N、C原子向内部扩形成扩散层。其反应方程式⑴如下:
(2-3)Fe+[N]=Fe2-3N
3Fe+[C]=Fe3C
一次氧化:主要氧化工序的作用一是彻底分解工件从氮化炉带出来的氰根,达到环保要求。在工件表面形成黑色氧化膜,增加防腐能力,并提高耐磨性。其反应方程式如下:
2Fe+02=2Fe0
4Fe+302=2Fe203
Fe0+Fe203=Fe304
抛光:鉴于螺纹结构件的特殊性,本案曾经采用喷砂处理的方式,虽可以成功地除去工件表面的疏松结构。但细小的(金刚砂粒径为0.2-0.3mm)却残留螺纹齿间,极其难以清除干净,也污染了后续的氧化溶液,反而导致表面氧化效果更糟。经过多次实验,匹配到了合适的磨料粒子,粒径大小约1.3mm。且仍然通过振动磨料拋光的方式,可较好地除去了氮化过程中残留物,为后续的氧化生成致密的氧化膜打下了良好的基础。
紧固件展-2017第十八届广州国际紧固件及设备展览会-巨浪展览-The 18th China(Guangzhou)Int’l Fastener & Equipment Exhibition