Home AboutUs Exhibition
Info
News
Center
Exhibitor
Manual
Cost of
Participation
Floor
Plan
Exhibition
Retrospect
Media
Support
Contact Chinese
¡¡News Type
Exhibition News
Industry News
Company News
Media reports
¡¡New Detail
     
Purdue University researchers develop super strong aluminum alloy rivalling stainless steel-The 19th China (Guangzhou) Int¡¯l Spring Industry Exhibition
1/31/2018  Spring Industry Exhibition-Spring expo
---------------------------------------------------------------------------------------------------------------
    Researchers have demonstrated how to create a super-strong aluminum alloy that rivals the strength of stainless steel, an advance with potential industrial applications. Xinghang Zhang, a professor in Purdue University¡¯s School of Materials Engineering said that ¡°Most lightweight aluminum alloys are soft and have inherently low mechanical strength, which hinders more widespread industrial application. However, high-strength, lightweight aluminum alloys with strength comparable to stainless steels would revolutionize the automobile and aerospace industries.¡±

New research shows how to alter the microstructure of aluminum to impart greater strength and ductility. Findings were detailed in two new research papers. The work was led by a team of researchers that included Purdue postdoctoral research associate Sichuang Xue and doctoral student Qiang Li.

The most recent paper was published online January 22 in the journal Advanced Materials. The earlier paper was published in November in the journal Nature Communications.

The new high strength aluminum is made possible by introducing ¡°stacking faults,¡± or distortions in the crystal structure. While these are easy to produce in metals such as copper and silver, they are difficult to introduce in aluminum because of its high ¡°stacking fault energy.¡±

Mr Zhang said that a metal¡¯s crystal lattice is made up of a repeating sequence of atomic layers. If one layer is missing, there is said to be a stacking fault. Meanwhile, so-called ¡°twin boundaries¡± consisting of two layers of stacking faults can form. One type of stacking fault, called a 9R phase, is particularly promising.

Mr Zhang said that ¡°It has been shown that twin boundaries are difficult to be introduced into aluminum. The formation of the 9R phase in aluminum is even more difficult because of its high stacking fault energy. ou want to introduce both nanotwins and 9R phase in nanograined aluminum to increase strength and ductility and improve thermal stability.¡±

Now, researchers have learned how to readily achieve this 9R phase and nanotwins in aluminum.

He said that ¡°These results show how to fabricate aluminum alloys that are comparable to, or even stronger than, stainless steels. There is a lot of potential commercial impact in this finding.¡±

Mr Xue is lead author of the Nature Communications paper, which is the first to report a ¡°shock-induced¡± 9R phase in aluminum. Researchers bombarded ultrathin aluminum films with tiny micro-projectiles of silicon dioxide, yielding 9R phase. He said that ¡°Here, by using a laser-induced projectile impact testing technique, we discover a deformation-induced 9R phase with tens of nanometers in width.¡±

The microprojectile tests were performed by a research group at Rice University, led by professor Edwin L Thomas, a co-author of the Nature Communications paper. A laser beam causes the particles to be ejected at a velocity of 600 meters per second. The procedure dramatically accelerates screening tests of various alloys for impact-resistance applications.

Mr Zhang said that ¡°Say I want to screen many materials within a short time. This method allows us to do that at far lower cost than otherwise possible.¡±

Li is lead author of the Advanced Materials paper, which describes how to induce a 9R phase in aluminum not by shock but by introducing iron atoms into aluminum¡¯s crystal structure via a procedure called magnetron sputtering. Iron also can be introduced into aluminum using other techniques, such as casting, and the new finding could potentially be scaled up for industrial applications.

The resulting ¡°nanotwinned¡± aluminum-iron alloy coatings proved to be one of the strongest aluminum alloys ever created, comparable to high-strength steels.

Mr Zhang said that ¡°Molecular-dynamics simulations, performed by professor Jian Wang¡¯s group at the University of Nebraska, Lincoln, showed the 9R phase and nanograins result in high strength and work-hardening ability and revealed the formation mechanisms of the 9R phase in aluminum. Understand new deformation mechanisms will help us design new high strength, ductile metallic materials, such as aluminum alloys.¡±

One potential application might be to design wear- and corrosion-resistant aluminum alloy coatings for the electronics and automobile industries.

The research was mainly funded by US Department of Energy¡¯s Office of Basic Energy Sciences, Materials Science and Engineering Division. The researchers have filed a patent application through the Purdue Research Foundation¡¯s Office of Technology Commercialization.

The transmission electron microscopy work for the research was supported by a new FEI Talos 200X microscope facility directed by Haiyan Wang, Purdue¡¯s Basil S. Turner Professor of Engineering; and the ¡°in situ micropillar compression¡± work in scanning electron microscopes was supported by Purdue¡¯s Life Science Microscopy Facility, led by Christopher J. Gilpin, director of the facility. These advanced microscopy facilities were made possible with support from Purdue¡¯s Office of the Executive Vice President for Research and Partnerships. -The 19th China (Guangzhou) Int¡¯l Spring Industry Exhibition -Spring Industry Exhibition, spring expo, 2018 Spring exhibition, 2018 Spring expo, China Spring exhibition, China Spring expo, steel spring exhibition, steel spring expo
Copyright © 1996-2024¡¡ JULANG.COM.CN Stone Rich Sight. All Rights Reserved
Add:Room 3A05-3A06,Building A1£¬Xinghui Park,Huaming Road 29,Pearl River New City,Guangzhou,510623,China